

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	streamkinect2 documentation

Welcome to streamkinect2’s documentation!

Contents:

	Example programs
	Simple ping client

	Mock kinect server

	Network protocol
	Server discovery

	Endpoints

	API Reference
	Event handling

	Common elements for both client and server

	Server

	Client

	Depth frame compression

	Mock kinect

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	streamkinect2 documentation

Example programs

Here are some example programs which use the streamkinect2 API.

Simple ping client

The following program shows how to use the
streamkinect2.server.ServerBrowser class to discover servers on the
network. For each server, a simple client is created which sends a ping to
the server and logs when a pong is received.

#!/usr/bin/env python
"""
Simple client which pings each server as it is discovered.

"""
import logging
import threading

from tornado.ioloop import IOLoop
from streamkinect2.server import ServerBrowser
from streamkinect2.client import Client

Install the zmq ioloop
from zmq.eventloop import ioloop
ioloop.install()

Get our logger
log = logging.getLogger(__name__)

Our listening class
class Listener(object):
 def __init__(self, browser, io_loop = None):
 self.clients = {}
 self.io_loop = io_loop or IOLoop.instance()
 browser.on_add_server.connect(self.add_server, sender=browser)
 browser.on_remove_server.connect(self.remove_server, sender=browser)

 # Keep a reference to browser since we remain interested and do not
 # wish it garbage collected.
 self.browser = browser

 def add_server(self, browser, server_info):
 log.info('Discovered server "{0.name}" at "{0.endpoint}"'.format(server_info))

 client = Client(server_info.endpoint, connect_immediately=True)
 self.clients[server_info.endpoint] = client

 def pong(server_info=server_info):
 log.info('Got pong from "{0.name}"'.format(server_info))
 self.clients[server_info.endpoint].disconnect()
 del self.clients[server_info.endpoint]

 log.info('Pinging server "{0.name}"...'.format(server_info))
 client.ping(pong)

 def remove_server(self, browser, server_info):
 log.info('Server "{0.name}" at "{0.endpoint}" went away'.format(server_info))

class IOLoopThread(threading.Thread):
 def run(self):
 # Create the server browser
 log.info('Creating server browser...')
 listener = Listener(ServerBrowser())

 # Run the ioloop
 log.info('Running...')
 ioloop.IOLoop.instance().start()

 log.info('Stopping')

 def stop(self):
 io_loop = ioloop.IOLoop.instance()
 io_loop.add_callback(io_loop.stop)
 self.join(3)

def main():
 # Set log level
 logging.basicConfig(level=logging.INFO)

 print('===')
 print('Press Enter to exit')
 print('===')

 # Start the event loop
 ioloop_thread = IOLoopThread()
 ioloop_thread.start()

 # Wait for input
 input()

 # Stop thread
 ioloop_thread.stop()

if __name__ == '__main__':
 main()

Mock kinect server

The following program shows how to create a simple server which will serve data
from a mock Kinect. See the streamkinect2.mock module.

#!/usr/bin/env python
"""
Simple server using the mock Kinect.

"""
import logging
import threading

from streamkinect2.server import Server
from streamkinect2.mock import MockKinect

Install the zmq ioloop
from zmq.eventloop import ioloop
ioloop.install()

Get our logger
log = logging.getLogger(__name__)

class IOLoopThread(threading.Thread):
 def run(self):
 # Create the server
 log.info('Creating server')
 server = Server()

 # Add mock kinect device to server
 kinect = MockKinect()
 server.add_kinect(kinect)

 # With the server and kinect running...
 log.info('Running server...')
 with server, kinect:
 # Run the ioloop
 ioloop.IOLoop.instance().start()

 # The server has now stopped
 log.info('Stopped')

 def stop(self):
 io_loop = ioloop.IOLoop.instance()
 io_loop.add_callback(io_loop.stop)
 self.join(3)

def main():
 # Set log level
 logging.basicConfig(level=logging.INFO)

 print('===')
 print('Press Enter to exit')
 print('===')

 # Start the event loop
 ioloop_thread = IOLoopThread()
 ioloop_thread.start()

 # Wait for input
 input()

 # Stop thread
 ioloop_thread.stop()

if __name__ == '__main__':
 main()

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	streamkinect2 documentation

Network protocol

The network protocol is based on Zeroconf [https://en.wikipedia.org/wiki/Zero-configuration_networking] for server
discovery and ZeroMQ [http://zeromq.org/] for communication. The
architecture is a traditional client-server model with one server dealing with
zero, one or many clients. In practice there will probably be one server and
one client. The transport is based entirely on ZeroMQ sockets and so it is
recommended that one read some of the ZeroMQ guide [http://zguide.zeromq.org/page:all] before this document.

Server discovery

Servers advertise themselves over ZeroConf using the _kinect2._tcp service
type. The IP address and port associated with that service is converted into a
ZeroMQ endpoint as tcp://<address>:<port> and is used to find the “control”
endpoint of the server.

Endpoints

Much like the USB protocol, each server advertises a number of “endpoints”
which are specified as a ZeroMQ address, usually of the form
tcp://<address>:<port>. The “control” endpoint is advertised over ZeroConf
and may be used to query other endpoints. An endpoint is usually a ZeroMQ
socket pair, one on the client and one on the server.

Control Endpoint

The “control” endpoint is a REP socket on the server which expects to be
connected to via a REQ socket on the client. Clients initiate communication
by sending a who message. The server will then respond with a me
message. The client may then send other messages expecting each time a reply
from the server. This is repeated until the client disconnects.

All messages are multipart messages with one or two frames. The first frame
is a single byte which indicates the message type. The second frame, if
present, represents a JSON encoded object which is the “payload” of the
message.

Each message type has its own semantics and payload schema. Some messages may
only be sent by a client and some only by a server.

error type

An error message (type 0x00) MUST only be sent by the server. The server
MAY send an error message in reply to any incoming request. The payload
must contain a reason field with a human-readable description of the error.
The client MAY choose to disconnect from the server or silently ignore the
error.

ping type

A ping message (type 0x01) MUST only be sent by a client. No payload is
required. The server MUST respond with an empty-payload message of type
pong or an error message.

pong type

A pong message (type 0x02) MUST only be sent by a server. It MUST do so in
response to a ping if no error is sent. No payload is required.

who type

A who message (type 0x03) MUST only be sent by a client. No payload is
required. The server MUST respond with a me message or an error
message.

me type

A me messages MUST only be sent by a server. It MUST do so in
response to a who message if no error is sent. A payload MUST be
present. The payload MUST be an object including at least a version
field which should be the numeric value 1. A client MUST ignore any me
message with a version field set to any other value.

The payload MUST include a field named name whose value is a string
representing a human-readable name for the server.

The payload MUST include a field named endpoints whose value is an object
whose fields correspond to endpoint names and whose values correspond to
ZeroMQ-style endpoint addresses. The client MUST ignore any endpoints whose
name it does not recognise. The server MAY advertise any endpoints it wishes
but it MUST include at least a control endpoint with a ZeroMQ address
corresponding to the control endpoint. The advertised endpoints MAY be
non-unique and MAY have different IP addresses.

The payload MUST include a field named devices whose value is an array of
device records. A device record is a JSON object. A device record MUST include
a field named id whose value is a string giving a unique name for a Kinect
connected to the server. A device record MUST include a field named
endpoints whose value takes the same format (but not necessarily the same
value) as the endpoints object in the payload. This endpoints object
gives endpoints which are specific to a particular device.

A typical payload will look like the following:

{
 "version": 1,
 "name": "Bob's Kinect",
 "endpoints": {
 "control": "tcp://10.0.0.1:1234"
 },
 "devices": [
 {
 "id": "123456789abcdefghijklmnopqrstuv",
 "endpoints": {
 "depth": "tcp://10.0.0.1:1236"
 }
 }
],
}

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	streamkinect2 documentation

API Reference

Kinect2 streaming server and client

Event handling

Some streamkinect2 object emit events. The blinker [https://pythonhosted.org/blinker/] library is used to handle signals. See the
blinker documentation for full details. As an example, here is how to register
an event handler for a new depth frame from a
streamkinect2.mock.MockKinect object:

from streamkinect2.mock import MockKinect

kinect = MockKinect()

The "depth_frame" argument name is important here as the depth frame is
passed as a keyword argument.
def handler_func(kinect, depth_frame):
 print('New depth frame')

MockKinect.on_depth_frame.connect(handler_func, kinect)

Alternatively, one may use the connect_via() decorator:

from streamkinect2.mock import MockKinect

kinect = MockKinect()

@MockKinect.on_depth_frame.connect_via(kinect)
def handler_func(kinect, depth_frame):
 print('New depth frame')

Note that, by default, signal handlers are kept as weak references so that they
do not need to be explicitly disconnected before they can be garbage collected.

Common elements for both client and server

	
class streamkinect2.common.EndpointType[source]

	Enumeration of endpoints exposed by a Server.

	
control

	A REP endpoint which accepts JSON-formatted control messages.

	
depth

	A PUB endpoint which broadcasts compressed depth frames to connected subscribers.

	
exception streamkinect2.common.ProtocolError[source]

	Raised when some low-level error in the network protocol has been
detected.

Server

	
class streamkinect2.server.Server(address=None, start_immediately=False, name=None, zmq_ctx=None, io_loop=None, announce=True)[source]

	A server capable of streaming Kinect2 data to interested clients.

Servers may have their lifetime managed by using them within a with statement:

with Server() as s:
 # server is running
 pass
server has stopped

address and port are the bind address (as a decimal-dotted IP address)
and port from which to start serving. If port is None, a random port is
chosen. If address is None then attempt to infer a sensible default.

name should be some human-readable string describing the server. If
None then a sensible default name is used.

zmq_ctx should be the zmq context to create servers in. If None, then
zmq.Context.instance() is used to get the global instance.

If not None, io_loop is the event loop to pass to
zmq.eventloop.zmqstream.ZMQStream used to communicate with the
cleint. If None then global IOLoop instance is used.

If announce is True then the server will be announced over ZeroConf when
it starts running.

	
address

	The address bound to as a decimal-dotted string.

	
endpoints

	The zeromq endpoints for this server. A dict-like object keyed by
endpoint type. (See streamkinect2.common.EndpointType.)

	
is_running

	True when the server is running, False otherwise.

	
kinects[source]

	list of kinect devices managed by this server. See add_kinect().

	
add_kinect(kinect)[source]

	Add a Kinect device to this server. kinect should be a object
implementing the same interface as
streamkinect2.mock.MockKinect.

	
remove_kinect(kinect)[source]

	Remove a Kinect device previously added via add_kinect().

	
start()[source]

	Explicitly start the server. If the server is already running, this
has no effect beyond logging a warning.

	
stop()[source]

	Explicitly stop the server. If the server is not running this has no
effect beyond logging a warning.

	
class streamkinect2.server.ServerBrowser(io_loop=None, address=None)[source]

	An object which listens for kinect2 streaming servers on the network.
The object will keep listening as long as it is alive and so if you want to
continue to receive notification of servers, you should keep it around.

io_loop is an instance of tornado.ioloop.IOLoop which should
be used to schedule sending signals. If None then the global instance is
used. This is needed because server discovery happens on a separate thread
to the tornado event loop which is used for the rest of the network
communication. Hence, when a server is discovered, the browser co-ordinates
with the event loop to call the add_server() and
remove_server() methods on the main IOLoop thread.

address is an explicit bind IP address for an interface to listen on as a
decimal-dotted string or None to use the default.

	
on_add_server = <blinker.base.Signal object at 0x7fa2cde8b810>

	Signal emitted when a new server is discovered on the network. Receivers
should take a single keyword argument, server_info, which will be an
instance of ServerInfo describing the server.

	
on_remove_server = <blinker.base.Signal object at 0x7fa2cde8b8d0>

	Signal emitted when a server removes itself from the network. Receivers
should take a single keyword argument, server_info, which will be an
instance of ServerInfo describing the server.

	
class streamkinect2.server.ServerInfo[source]

	Kinect2 Stream server information.

This is a subclass of the bultin tuple class with named accessors
for convenience. The tuple holds name, endpoint pairs.

	
name

	A server-provided human-readable name for the server.

	
endpoint

	Connection information for control channel which should be passed to
streamkinect2.client.Client.

Client

	
class streamkinect2.client.Client(control_endpoint, connect_immediately=False, zmq_ctx=None, io_loop=None)[source]

	Client for a streaming kinect2 server.

Usually the client will be used with a with statement:

with Client(endpoint) as c:
 # c is connected here
 pass
c is disconnected here

control_endpoint is the zeromq control endpoint for the server which
should be connected to.

If not None, zmq_ctx is the zeromq context to create sockets in. If
zmq_ctx is None, the global context returned by
zmq.Context.instance() is used.

If not None, io_loop is the event loop to pass to
zmq.eventloop.zmqstream.ZMQStream used to listen to responses
from the server. If None then global IO loop is used.

If connect_immediately is True then the client attempts to connect when
constructed. If False then connect() must be used explicitly.

	
server_name

	A string giving a human-readable name for the server or None if the
server has not yet replied to our initial query.

	
endpoints

	A dict of endpoint addresses keyed by
streamkinect2common.EndpointType.

	
is_connected

	True if the client is connected. False otherwise.

The following attributes are mostly of use to the unit tests and advanced
users.

	
heartbeat_period

	The delay, in milliseconds, between “heartbeat” requests to the server.
These are used to ensure the server is still alive. Changes to this
attribute are ignored once connect() has been called.

	
response_timeout

	The maximum wait time, in milliseconds, the client waits for the server
to reply before giving up.

	
connect()[source]

	Explicitly connect the client.

	
disconnect()[source]

	Explicitly disconnect the client.

	
enable_depth_frames(kinect_id)[source]

	Enable streaming of depth frames. kinect_id is the id of the
device which should have streaming enabled.

	Raises ValueError:

		if kinect_id does not correspond to a connected device

	
on_add_kinect = <blinker.base.Signal object at 0x7fa2cdce1710>

	A signal which is emitted when a new kinect device is available. Handlers
should accept a single keyword argument kinect_id which is the unique id
associated with the new device.

	
on_connect = <blinker.base.Signal object at 0x7fa2cdce1690>

	A signal which is emitted when the client connects to a server.

	
on_depth_frame = <blinker.base.Signal object at 0x7fa2cdce1790>

	A signal which is emitted when a new depth frame is available. Handlers
should accept two keyword arguments: depth_frame which will be an
instance of an object with the same interface as DepthFrame and
kinect_id which will be the unique id of the kinect device producing the
depth frame.

	
on_disconnect = <blinker.base.Signal object at 0x7fa2cdce16d0>

	A signal which is emitted when the client disconnects from a server.

	
on_remove_kinect = <blinker.base.Signal object at 0x7fa2cdce1750>

	A signal which is emitted when a kinect device is removed. Handlers
should accept a single keyword argument kinect_id which is the unique id
associated with the new device.

	
ping(pong_cb=None)[source]

	Send a ‘ping’ request to the server. If pong_cb is not None, it
is a callable which is called with no arguments when the pong response
has been received.

Depth frame compression

	
class streamkinect2.compress.DepthFrameCompressor(kinect, io_loop=None)[source]

	Asynchronous compression pipeline for depth frames.

kinect is a streamkinect2.mock.MockKinect-like object. Depth
frames emitted by on_depth_frame() will be compressed with
frame-drop if the compressor becomes overloaded.

If io_loop is provided, it specifies the
tornado.ioloop.IOLoop which is used to co-ordinate the worker
process. If not provided, the global instance is used.

	
kinect

	Kinect object associated with this compressor.

	
on_compressed_frame = <blinker.base.Signal object at 0x7fa2ceb41410>

	Signal emitted when a new compressed frame is available. Receivers take
a single keyword argument, compressed_frame, which is a Python
buffer-like object containing the compressed frame data. The signal is
emitted on the IOLoop thread.

Mock kinect

Note

This module requires numpy to be installed.

Support for a mock kinect when testing.

	
class streamkinect2.mock.DepthFrame[source]

	A single frame of depth data.

	
data

	Python buffer-like object pointing to raw frame data as a C-ordered
array of uint16.

	
shape

	Pair giving the width and height of the depth frame.

	
class streamkinect2.mock.MockKinect[source]

	A mock Kinect device.

This class implements a “virtual” Kinect which generates some mock data. It
can be used for testing or benchmarking.

Use start() and stop() to start and stop the device or
wrap it in a with statement:

with MockKinect() as kinect:
 # kinect is running here
 pass
kinect has stopped running

Note

Listener callbacks are called in a separate thread. If using something
like tornado.ioloop.IOLoop, then you will need to make sure
that server messages are sent on the right thread. The
streamkinect2.server.Server class should take care of that
in most cases you will encounter.

	
unique_kinect_id

	A string with an opaque, unique id for this Kinect.

	
on_depth_frame = <blinker.base.Signal object at 0x7fa2cdb33210>

	A signal which is emitted when a new depth frame is available. Handlers
should accept a single keyword argument depth_frame which will be an
instance of DepthFrame.

	
start()[source]

	Start the mock device running. Mock data is generated on a separate
thread.

	
stop()[source]

	Stop the mock device running. Blocks until the thread shuts down
gracefully with a one second timeout.

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	streamkinect2 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 streamkinect2	

 	
 	
 streamkinect2.client	

 	
 	
 streamkinect2.common	

 	
 	
 streamkinect2.compress	

 	
 	
 streamkinect2.mock	

 	
 	
 streamkinect2.server	

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	streamkinect2 documentation

Index

 A
 | C
 | D
 | E
 | H
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | U

A

 	

 	add_kinect() (streamkinect2.server.Server method)

 	

 	address (streamkinect2.server.Server attribute)

C

 	

 	Client (class in streamkinect2.client)

 	connect() (streamkinect2.client.Client method)

 	

 	control (streamkinect2.common.EndpointType attribute)

D

 	

 	data (streamkinect2.mock.DepthFrame attribute)

 	depth (streamkinect2.common.EndpointType attribute)

 	DepthFrame (class in streamkinect2.mock)

 	

 	DepthFrameCompressor (class in streamkinect2.compress)

 	disconnect() (streamkinect2.client.Client method)

E

 	

 	enable_depth_frames() (streamkinect2.client.Client method)

 	endpoint (streamkinect2.server.ServerInfo attribute)

 	

 	endpoints (streamkinect2.client.Client attribute)

 	

 	(streamkinect2.server.Server attribute)

 	EndpointType (class in streamkinect2.common)

H

 	

 	heartbeat_period (streamkinect2.client.Client attribute)

I

 	

 	is_connected (streamkinect2.client.Client attribute)

 	

 	is_running (streamkinect2.server.Server attribute)

K

 	

 	kinect (streamkinect2.compress.DepthFrameCompressor attribute)

 	

 	kinects (streamkinect2.server.Server attribute)

M

 	

 	MockKinect (class in streamkinect2.mock)

N

 	

 	name (streamkinect2.server.ServerInfo attribute)

O

 	

 	on_add_kinect (streamkinect2.client.Client attribute)

 	on_add_server (streamkinect2.server.ServerBrowser attribute)

 	on_compressed_frame (streamkinect2.compress.DepthFrameCompressor attribute)

 	on_connect (streamkinect2.client.Client attribute)

 	

 	on_depth_frame (streamkinect2.client.Client attribute)

 	

 	(streamkinect2.mock.MockKinect attribute)

 	on_disconnect (streamkinect2.client.Client attribute)

 	on_remove_kinect (streamkinect2.client.Client attribute)

 	on_remove_server (streamkinect2.server.ServerBrowser attribute)

P

 	

 	ping() (streamkinect2.client.Client method)

 	

 	ProtocolError

R

 	

 	remove_kinect() (streamkinect2.server.Server method)

 	

 	response_timeout (streamkinect2.client.Client attribute)

S

 	

 	Server (class in streamkinect2.server)

 	server_name (streamkinect2.client.Client attribute)

 	ServerBrowser (class in streamkinect2.server)

 	ServerInfo (class in streamkinect2.server)

 	shape (streamkinect2.mock.DepthFrame attribute)

 	start() (streamkinect2.mock.MockKinect method)

 	

 	(streamkinect2.server.Server method)

 	stop() (streamkinect2.mock.MockKinect method)

 	

 	(streamkinect2.server.Server method)

 	

 	streamkinect2 (module)

 	streamkinect2.client (module)

 	streamkinect2.common (module)

 	streamkinect2.compress (module)

 	streamkinect2.mock (module)

 	streamkinect2.server (module)

U

 	

 	unique_kinect_id (streamkinect2.mock.MockKinect attribute)

 Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

 _static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_modules/streamkinect2/mock.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 		Module code »

 Source code for streamkinect2.mock

"""
Mock kinect
===========

.. note::

 This module requires :py:mod:`numpy` to be installed.

Support for a mock kinect when testing.

"""
from collections import namedtuple
import threading
import time
import uuid

from blinker import Signal
import numpy as np

def _make_mock(frame_shape):
 xs, ys = np.meshgrid(np.arange(frame_shape[1]), np.arange(frame_shape[0]))
 wall = np.abs(ys>>1) + 1000
 sphere = np.sqrt((xs-(frame_shape[1]>>1))*(xs-(frame_shape[1]>>1)) + \
 (ys-(frame_shape[0]>>1))*(ys-(frame_shape[0]>>1))) + 500
 return wall.astype(np.uint16), sphere.astype(np.uint16)

[docs]class DepthFrame(namedtuple('DepthFrame', ('data', 'shape'))):
 """A single frame of depth data.

 .. py:attribute:: data

 Python buffer-like object pointing to raw frame data as a C-ordered
 array of uint16.

 .. py:attribute:: shape

 Pair giving the width and height of the depth frame.

 """

[docs]class MockKinect(threading.Thread):
 """A mock Kinect device.

 This class implements a "virtual" Kinect which generates some mock data. It
 can be used for testing or benchmarking.

 Use :py:meth:`start` and :py:meth:`stop` to start and stop the device or
 wrap it in a ``with`` statement::

 with MockKinect() as kinect:
 # kinect is running here
 pass
 # kinect has stopped running

 .. note::

 Listener callbacks are called in a separate thread. If using something
 like :py:class:`tornado.ioloop.IOLoop`, then you will need to make sure
 that server messages are sent on the right thread. The
 :py:class:`streamkinect2.server.Server` class should take care of that
 in most cases you will encounter.

 .. py:attribute:: unique_kinect_id

 A string with an opaque, unique id for this Kinect.

 """

 on_depth_frame = Signal()
 """A signal which is emitted when a new depth frame is available. Handlers
 should accept a single keyword argument *depth_frame* which will be an
 instance of :py:class:`DepthFrame`."""

 def __init__(self):
 super(MockKinect, self).__init__()

 # Invent unique id
 self.unique_kinect_id = uuid.uuid4().hex

 self._frame_shape = (424, 512)
 self._wall, self._sphere = _make_mock(self._frame_shape)

 self._should_stop = False

 def __enter__(self):
 self.start()
 return self

 def __exit__(self, type, value, traceback):
 self.stop()

[docs] def start(self):
 """Start the mock device running. Mock data is generated on a separate
 thread.

 """
 super(MockKinect, self).start()

[docs] def stop(self):
 """Stop the mock device running. Blocks until the thread shuts down
 gracefully with a one second timeout.

 """
 self._should_stop = True
 self.join(1)

 def run(self):
 while not self._should_stop:
 then = time.time()
 dx = int(np.sin(then) * 100)
 df = np.minimum(self._wall, np.roll(self._sphere, dx, 1))
 df = np.asarray(df, order='C', dtype=np.uint16)
 depth_frame = DepthFrame(data=bytes(df.data), shape=df.shape[::-1])
 self.on_depth_frame.send(self, depth_frame=depth_frame)
 now = time.time()

 # HACK: aim for just above 30FPS
 time.sleep(max(0, (1.0/35.0) - (now-then)))

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

_modules/streamkinect2/compress.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 		Module code »

 Source code for streamkinect2.compress

"""
Depth frame compression
=======================

"""
from logging import getLogger
from io import BytesIO
from multiprocessing.pool import Pool
from multiprocessing import cpu_count

from blinker import Signal
import lz4
import numpy as np
import tornado.ioloop

log = getLogger(__name__)

def _compress_depth_frame(depth_frame):
 try:
 d = np.frombuffer(depth_frame.data, dtype=np.uint16).reshape(
 depth_frame.shape[::-1], order='C')
 high_bits = ((d >> 4) & 0xff).astype(np.uint8)
 low_bits = (d & 0xf).astype(np.uint8)
 packed_low_bits = (low_bits[:,0::2]<<4) | low_bits[:,1::2]

 bio = BytesIO()
 bio.write(np.asarray(high_bits, order='C').data)
 bio.write(np.asarray(packed_low_bits, order='C').data)
 return lz4.dumps(bio.getvalue())
 except Exception as e:
 print('Error: {0}'.format(e))
 return None

[docs]class DepthFrameCompressor(object):
 """
 Asynchronous compression pipeline for depth frames.

 kinect is a :py:class:`streamkinect2.mock.MockKinect`-like object. Depth
 frames emitted by :py:meth:`on_depth_frame` will be compressed with
 frame-drop if the compressor becomes overloaded.

 If *io_loop* is provided, it specifies the
 :py:class:`tornado.ioloop.IOLoop` which is used to co-ordinate the worker
 process. If not provided, the global instance is used.

 .. py:attribute:: kinect

 Kinect object associated with this compressor.
 """

 on_compressed_frame = Signal()
 """Signal emitted when a new compressed frame is available. Receivers take
 a single keyword argument, *compressed_frame*, which is a Python
 buffer-like object containing the compressed frame data. The signal is
 emitted on the IOLoop thread."""

 # The maximum number of frames we can be waiting for before we start
 # dropping them.
 _MAX_IN_FLIGHT = cpu_count() + 1

 def __init__(self, kinect, io_loop=None):
 # Public attributes
 self.kinect = kinect

 # Private attributes
 self._io_loop = io_loop or tornado.ioloop.IOLoop.instance()
 self._pool = Pool() # worker process pool
 self._n_in_flight = 0 # How many frames are we waiting for?
 self._n_dropped = 0

 # Wire ourselves up for depth frame events
 kinect.on_depth_frame.connect(self._on_depth_frame, sender=kinect)

 def __del__(self):
 # As a courtesy, terminate the worker pool to avoid having a sea of
 # dangling processes.
 self._pool.terminate()

 def _on_compressed_frame(self, compressed_frame):
 # Record arrival of frame
 self._n_in_flight -= 1

 # Send signal
 try:
 self._io_loop.add_callback(
 self.on_compressed_frame.send,
 self, compressed_frame=compressed_frame
)
 except Exception as e:
 # HACK: Since multiprocessing *might* call this handler after the
 # io loop has shut down (which will raise an Exception) and because
 # there's no documented way to determine if the io loop is still
 # alive ahead of time, we swallow exceptions here. This should
 # happen rarely when one is rapidly starting and stopping IOLoops
 # (such as in the test-suite!) so log it as a warning.
 log.warn('DepthFrameCompressor swallowed {0} exception'.format(e))

 def _on_depth_frame(self, kinect, depth_frame):
 # If we aren't waiting on too many frames, submit
 if self._n_in_flight < DepthFrameCompressor._MAX_IN_FLIGHT:
 self._pool.apply_async(_compress_depth_frame,
 args=(depth_frame,), callback=self._on_compressed_frame)
 self._n_in_flight += 1
 else:
 # Only log every 10 dropped frames to avoid being too spammy
 self._n_dropped += 1
 if self._n_dropped % 10 == 0:
 log.warn('Dropped {0} depth frames'.format(self._n_dropped))

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 All modules for which code is available

		streamkinect2.client

		streamkinect2.common

		streamkinect2.compress

		streamkinect2.mock

		streamkinect2.server

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

_modules/streamkinect2/common.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 		Module code »

 Source code for streamkinect2.common

"""
Common elements for both client and server
==

"""
import enum
import json

[docs]class ProtocolError(RuntimeError):
 """Raised when some low-level error in the network protocol has been
 detected.
 """

[docs]class EndpointType(enum.Enum):
 """
 Enumeration of endpoints exposed by a :py:class:`Server`.

 .. py:attribute:: control

 A *REP* endpoint which accepts JSON-formatted control messages.

 .. py:attribute:: depth

 A *PUB* endpoint which broadcasts compressed depth frames to connected subscribers.

 """
 control = 1
 depth = 2

class MessageType(enum.Enum):
 error = b'\x00'
 ping = b'\x01'
 pong = b'\x02'
 who = b'\x03'
 me = b'\x04'

def make_msg(type, payload):
 if payload is None:
 return [type.value,]
 return [type.value, json.dumps(payload).encode('utf8')]

def parse_msg(msg):
 if len(msg) == 1:
 return MessageType(msg[0]), None
 elif len(msg) == 2:
 return MessageType(msg[0]), json.loads(msg[1].decode('utf8'))

 raise ValueError('Multipart message must have length 1 or 2')

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

_modules/streamkinect2/client.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 		Module code »

 Source code for streamkinect2.client

"""
Client
======

"""
from collections import namedtuple, deque
from logging import getLogger
import functools

from blinker import Signal
import tornado.ioloop
import zmq
from zmq.eventloop.zmqstream import ZMQStream

from .common import EndpointType, ProtocolError, MessageType
from .common import make_msg, parse_msg

Global logging object
log = getLogger(__name__)

[docs]class Client(object):
 """Client for a streaming kinect2 server.

 Usually the client will be used with a ``with`` statement::

 with Client(endpoint) as c:
 # c is connected here
 pass
 # c is disconnected here

 control_endpoint is the zeromq control endpoint for the server which
 should be connected to.

 If not *None*, *zmq_ctx* is the zeromq context to create sockets in. If
 zmq_ctx is *None*, the global context returned by
 :py:meth:`zmq.Context.instance` is used.

 If not *None*, *io_loop* is the event loop to pass to
 :py:class:`zmq.eventloop.zmqstream.ZMQStream` used to listen to responses
 from the server. If *None* then global IO loop is used.

 If *connect_immediately* is *True* then the client attempts to connect when
 constructed. If *False* then :py:meth:`connect` must be used explicitly.

 .. py:attribute:: server_name

 A string giving a human-readable name for the server or *None* if the
 server has not yet replied to our initial query.

 .. py:attribute:: endpoints

 A :py:class:`dict` of endpoint addresses keyed by
 :py:class:`streamkinect2common.EndpointType`.

 .. py:attribute:: is_connected

 True if the client is connected. *False* otherwise.

 The following attributes are mostly of use to the unit tests and advanced
 users.

 .. py:attribute:: heartbeat_period

 The delay, in milliseconds, between "heartbeat" requests to the server.
 These are used to ensure the server is still alive. Changes to this
 attribute are ignored once :py:meth:`connect` has been called.

 .. py:attribute:: response_timeout

 The maximum wait time, in milliseconds, the client waits for the server
 to reply before giving up.

 """

 on_connect = Signal()
 """A signal which is emitted when the client connects to a server."""

 on_disconnect = Signal()
 """A signal which is emitted when the client disconnects from a server."""

 on_add_kinect = Signal()
 """A signal which is emitted when a new kinect device is available. Handlers
 should accept a single keyword argument *kinect_id* which is the unique id
 associated with the new device."""

 on_remove_kinect = Signal()
 """A signal which is emitted when a kinect device is removed. Handlers
 should accept a single keyword argument *kinect_id* which is the unique id
 associated with the new device."""

 on_depth_frame = Signal()
 """A signal which is emitted when a new depth frame is available. Handlers
 should accept two keyword arguments: *depth_frame* which will be an
 instance of an object with the same interface as :py:class:`DepthFrame` and
 kinect_id which will be the unique id of the kinect device producing the
 depth frame."""

 def __init__(self, control_endpoint, connect_immediately=False, zmq_ctx=None, io_loop=None):
 self.is_connected = False
 self.server_name = None
 self.endpoints = {
 EndpointType.control: control_endpoint
 }

 # Default values for timeouts, periods, etc
 self.heartbeat_period = 10000
 self.response_timeout = 5000

 if zmq_ctx is None:
 zmq_ctx = zmq.Context.instance()
 self._zmq_ctx = zmq_ctx

 self._io_loop = io_loop or tornado.ioloop.IOLoop.instance()

 self._response_handlers = deque()

 # Heartbeat callback
 self._heartbeat_callback = None

 # Dictionary of device records keyed by id
 self._kinect_records = {}

 # ZMQStream for control socket
 self._control_stream = None

 # Handle to timeout when waiting for a response
 self._response_timeout_handle = None

 if connect_immediately:
 self.connect()

 @property
 def kinect_ids(self):
 return list(self._kinect_records.keys())

[docs] def ping(self, pong_cb=None):
 """Send a 'ping' request to the server. If *pong_cb* is not *None*, it
 is a callable which is called with no arguments when the pong response
 has been received.

 """
 self._ensure_connected()

 def pong(type, payload, pong_cb=pong_cb):
 if pong_cb is not None:
 pong_cb()

 self._control_send(MessageType.ping, recv_cb=pong)

[docs] def enable_depth_frames(self, kinect_id):
 """Enable streaming of depth frames. *kinect_id* is the id of the
 device which should have streaming enabled.

 :raises ValueError: if *kinect_id* does not correspond to a connected device

 """
 try:
 record = self._kinect_records[kinect_id]
 except KeyError:
 raise ValueError('Kinect id "{0}" does not correspond to a connected device'.format(
 kinect_id))

 # Create subscriber stream
 socket = self._zmq_ctx.socket(zmq.SUB)
 socket.connect(record.endpoints[EndpointType.depth])
 socket.setsockopt_string(zmq.SUBSCRIBE, u'')
 stream = ZMQStream(socket, self._io_loop)
 record.streams[EndpointType.depth] = stream

 # Fire signal on incoming depth frame
 def on_recv(msg, kinect_id=kinect_id):
 # TODO: decompress frame
 self.on_depth_frame.send(self, kinect_id=kinect_id, depth_frame=None)

 # Wire up callback
 stream.on_recv(on_recv)

[docs] def connect(self):
 """Explicitly connect the client."""
 if self.is_connected:
 log.warn('Client already connected')
 return

 # Create, connect and wire up control socket listener
 self._connect_control_endpoint()

 # We should not have any pending response timeouts
 assert self._response_timeout_handle is None

 self.is_connected = True

 # Kick off an initial "who-me" request
 self._who_me()

 # Create and start the heartbeat callbacl
 self._heartbeat_callback = tornado.ioloop.PeriodicCallback(
 self._who_me, self.heartbeat_period, self._io_loop)
 self._heartbeat_callback.start()

 # Finally, signal connection
 self.on_connect.send(self)

[docs] def disconnect(self):
 """Explicitly disconnect the client."""
 if not self.is_connected:
 log.warn('Client not connected')
 return

 # Cancel any pending response timeout
 if self._response_timeout_handle is not None:
 self._io_loop.remove_timeout(self._response_timeout_handle)

 # Stop heartbeat callback
 if self._heartbeat_callback is not None:
 self._heartbeat_callback.stop()
 self._heartbeat_callback = None

 # TODO: check if disconnect() on the sockets is necessary
 self._control_stream = None

 self.is_connected = False

 # Finally, signal disconnection
 self.on_disconnect.send(self)

 _KinectRecord = namedtuple('_KinectRecord', ['endpoints', 'streams'])

 def _who_me(self):
 """Request the list of endpoints from the server.

 """
 # Handler function
 def got_me(type, payload):
 if type != MessageType.me:
 raise ProtocolError('Expected me list but got "{0}" instead'.format(type))

 log.info('Received "me" from server')

 if payload is None or 'version' not in payload or payload['version'] != 1:
 log.error('me had wrong or missing version')
 raise ProtocolError('unknown server protocol')

 # Fill in server information
 self.server_name = payload['name']
 log.info('Server identifies itself as "{0}"'.format(self.server_name))

 # Remember the old kinect ids
 old_kinect_ids = set(self._kinect_records.keys())

 # Extract kinects
 devices = payload['devices']
 new_records = {}
 for device in devices:
 # Fetch or create the record for this device
 try:
 record = self._kinect_records[device['id']]
 except KeyError:
 record = Client._KinectRecord(endpoints={}, streams={})
 new_records[device['id']] = record

 # Fill in endpoint and stream dictionaries for device
 for ep_type in EndpointType:
 # See if this endpoint is in the payload
 ep = None
 try:
 ep = device['endpoints'][ep_type.name]
 except KeyError:
 pass

 if ep is None and ep_type in record.endpoints:
 # Endpoint has gone away but was there
 del record.endpoints[ep_type]
 del record.streams[ep_type]
 elif ep is not None:
 # Is this a new or changed endpoint endpoint?
 if ep_type not in record.endpoints or record.endpoints[ep_type] != ep:
 # Record new/changed endpoint
 record.endpoints[ep_type] = ep

 # Initially there are no streams for any endpoint to avoid
 # subscribing to services we do not need.
 record.streams[ep_type] = None

 # Update kinect records
 self._kinect_records = new_records

 # Fill in out server endpoint list from payload
 endpoints = payload['endpoints']
 for endpoint_type in EndpointType:
 try:
 self.endpoints[endpoint_type] = endpoints[endpoint_type.name]
 log.info('Server added "{0.name}" endpoint at "{1}"'.format(
 endpoint_type, endpoints[endpoint_type.name]))
 except KeyError:
 # Skip endpoints we don't know about
 pass

 # Send {add,remove}_kinect events...
 new_kinect_ids = set(self._kinect_records.keys())

 # ... for devices in new list and not in old
 for k_id in new_kinect_ids.difference(old_kinect_ids):
 self.on_add_kinect.send(self, kinect_id=k_id)

 # ... for devices in old list and not in new
 for k_id in old_kinect_ids.difference(new_kinect_ids):
 self.on_remove_kinect.send(self, kinect_id=k_id)

 # Send packet
 log.info('Requesting server identity')
 self._control_send(MessageType.who, recv_cb=got_me)

 def _ensure_connected(self):
 if not self.is_connected:
 raise RuntimeError('Client is not connected')

 def __enter__(self):
 self.connect()
 return self

 def __exit__(self, type, value, traceback):
 self.disconnect()

 def _connect_control_endpoint(self):
 control_endpoint = self.endpoints[EndpointType.control]

 # Disconnect any existing socket (or, rather, let GC do it)
 if self._control_stream is not None:
 self._control_stream = None

 # Create, connect and wire up control socket listener
 control_socket = self._zmq_ctx.socket(zmq.REQ)
 control_socket.connect(control_endpoint)
 self._control_stream = ZMQStream(control_socket, self._io_loop)
 self._control_stream.on_recv(self._control_recv)

 def _control_send(self, type, payload=None, recv_cb=None):
 """Send *payload* formatted as a JSON object along the control socket.
 If *recv_cb* is not *None*, it is a callable which is called with the
 type and Python object representing the response payload from the
 server. If there is no payload, None is passed.

 """
 # (Re-)set response timeout
 if self._response_timeout_handle is not None:
 self._io_loop.remove_timeout(self._response_timeout_handle)
 self._io_loop.call_later(self.response_timeout * 1e-3, self._response_timed_out)

 # Add the response handler and send the message
 self._response_handlers.append(recv_cb)
 self._control_stream.send_multipart(make_msg(type, payload))

 def _control_recv(self, msg):
 """Called when there is something to be received on the control socket."""
 # If we're disconnected, then just drop the incoming packet.
 if not self.is_connected:
 return

 # Parse message
 type, payload = parse_msg(msg)

 # Do we have a recv handler?
 handler = self._response_handlers.popleft()
 if handler is not None:
 handler(type, payload)

 def _response_timed_out(self):
 """Called when the response timeout fires."""
 # Do nothing if already disconnected or if there are no pending requests
 if not self.is_connected or len(self._response_handlers) == 0:
 return

 log.error('Client timed out while waiting for server response')
 self.disconnect()

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

_modules/streamkinect2/server.html

 Navigation

 		
 index

 		
 modules |

 		streamkinect2 documentation »

 		Module code »

 Source code for streamkinect2.server

"""
Server
======
"""
from collections import namedtuple
from logging import getLogger
import platform
import socket
import uuid
import weakref

from blinker import Signal
from tornado.ioloop import IOLoop
import zeroconf
import zmq
from zmq.eventloop.zmqstream import ZMQStream

from .common import EndpointType, MessageType, make_msg, parse_msg
from .compress import DepthFrameCompressor

Global zeroconf object pool keyed by bind address
_ZC_POOL = {}
def _get_zeroconf(bindaddress):
 try:
 return _ZC_POOL[bindaddress]
 except KeyError:
 _ZC_POOL[bindaddress] = zeroconf.Zeroconf(bindaddress)
 return _ZC_POOL[bindaddress]

Our Zeroconf service type
_ZC_SERVICE_TYPE = '_kinect2._tcp.local.'

Global logging object
log = getLogger(__name__)

[docs]class ServerInfo(namedtuple('ServerInfo', ['name', 'endpoint'])):
 """Kinect2 Stream server information.

 This is a subclass of the bultin :py:class:`tuple` class with named accessors
 for convenience. The tuple holds *name*, *endpoint* pairs.

 .. py:attribute:: name

 A server-provided human-readable name for the server.

 .. py:attribute:: endpoint

 Connection information for control channel which should be passed to
 :py:class:`streamkinect2.client.Client`.
 """

class _KinectRecord(namedtuple('_KinectRecord',
 ['kinect', 'endpoints', 'streams', 'depth_compresser'])):
 pass

[docs]class Server(object):
 """A server capable of streaming Kinect2 data to interested clients.

 Servers may have their lifetime managed by using them within a ``with`` statement::

 with Server() as s:
 # server is running
 pass
 # server has stopped

 address and *port* are the bind address (as a decimal-dotted IP address)
 and port from which to start serving. If *port* is None, a random port is
 chosen. If *address* is *None* then attempt to infer a sensible default.

 name should be some human-readable string describing the server. If
 None then a sensible default name is used.

 zmq_ctx should be the zmq context to create servers in. If *None*, then
 :py:meth:`zmq.Context.instance` is used to get the global instance.

 If not *None*, *io_loop* is the event loop to pass to
 :py:class:`zmq.eventloop.zmqstream.ZMQStream` used to communicate with the
 cleint. If *None* then global IOLoop instance is used.

 If *announce* is True then the server will be announced over ZeroConf when
 it starts running.

 .. py:attribute:: address

 The address bound to as a decimal-dotted string.

 .. py:attribute:: endpoints

 The zeromq endpoints for this server. A *dict*-like object keyed by
 endpoint type. (See :py:class:`streamkinect2.common.EndpointType`.)

 .. py:attribute:: is_running

 True when the server is running, *False* otherwise.

 .. py:attribute:: kinects

 :py:class:`list` of kinect devices managed by this server. See :py:meth:`add_kinect`.

 """
 def __init__(self, address=None, start_immediately=False,
 name=None, zmq_ctx=None, io_loop=None, announce=True):
 # Choose a sensible name if none is specified
 if name is None:
 import getpass
 import platform
 name = 'Kinect {0}'.format(uuid.uuid4())

 # Get a zeroconf instance appropriate to the bind address
 if announce:
 self._zc = _get_zeroconf(address)
 else:
 self._zc = None

 if address is None:
 if announce:
 address = self._zc.intf
 else:
 address = '0.0.0.0' # By default bind to any interface

 # Set public attributes
 self.is_running = False
 self.name = name
 self.address = address
 self.endpoints = {}

 self._announce = announce

 # If we announce over zero conf then we can use '.local' addressing.
 # Otherwise, fall back to the specified address.
 if self._announce:
 self._server_address = '{0}.local'.format(platform.node())
 else:
 self._server_address = socket.gethostbyaddr(self.address)[0]

 # zmq streams for each endpoint
 self._streams = {}
 self._io_loop = io_loop

 # kinects which we manage. Keyed by device id.
 self._kinects = { }

 if zmq_ctx is None:
 zmq_ctx = zmq.Context.instance()
 self._zmq_ctx = zmq_ctx

 if start_immediately:
 self.start()

 def __del__(self):
 if self.is_running:
 self.stop()

[docs] def add_kinect(self, kinect):
 """Add a Kinect device to this server. *kinect* should be a object
 implementing the same interface as
 :py:class:`streamkinect2.mock.MockKinect`.

 """
 endpoints, streams = {}, {}

 # Create zeromq sockets
 endpoints_to_create = [
 (zmq.PUB, EndpointType.depth),
]
 for type, key in endpoints_to_create:
 streams[key], endpoints[key] = self._create_and_bind_socket(type)

 depth_compresser = DepthFrameCompressor(kinect, io_loop=self._io_loop)
 self._kinects[kinect.unique_kinect_id] = _KinectRecord(kinect, endpoints,
 streams, depth_compresser)

 # Register our interest in compressed frames
 DepthFrameCompressor.on_compressed_frame.connect(
 self._on_compressed_frame, sender=depth_compresser)

[docs] def remove_kinect(self, kinect):
 """Remove a Kinect device previously added via :py:meth:`add_kinect`."""
 # Find this kinect's record
 record = self._kinects[kinect.unique_kinect_id]

 # Remove it from the list
 del self._kinects[kinect.unique_kinect_id]

 # Disconnect signal handlers
 DepthFrameCompressor.on_compressed_frame.disconnect(
 self._on_compressed_frame, sender=record.depth_compresser)

 @property
[docs] def kinects(self):
 # Return a list rather than exposing the fact that we store kinects in
 # a set.
 return list(k.kinect for k in self._kinects.values())

[docs] def start(self):
 """Explicitly start the server. If the server is already running, this
 has no effect beyond logging a warning.

 """
 if self.is_running:
 log.warn('Server already running')
 return

 # Create zeromq sockets
 endpoints_to_create = [
 (zmq.REP, EndpointType.control),
]
 for type, key in endpoints_to_create:
 self._streams[key], self.endpoints[key] = self._create_and_bind_socket(type)

 # Listen for incoming messages
 self._streams[EndpointType.control].on_recv_stream(self._control_recv)

 # Use the control endpoint's port as the port to advertise on zeroconf
 control_port = int(self.endpoints[EndpointType.control].split(':')[2])

 if self._announce:
 # Create a Zeroconf service info for ourselves
 self._zc_info = zeroconf.ServiceInfo(_ZC_SERVICE_TYPE,
 '.'.join((self.name, _ZC_SERVICE_TYPE)),
 address=socket.inet_aton(self._zc.intf), port=control_port,
 properties={}, server=self._server_address)

 # register ourselves with zeroconf
 log.info('Registering server "{0}" with Zeroconf'.format(self.name))
 self._zc.registerService(self._zc_info)

 self.is_running = True

[docs] def stop(self):
 """Explicitly stop the server. If the server is not running this has no
 effect beyond logging a warning.

 """
 if not self.is_running:
 log.warn('Server already stopped')
 return

 if self._announce:
 # unregister ourselves with zeroconf
 log.info('Unregistering server "{0}" with Zeroconf'.format(self.name))
 self._zc.unregisterService(self._zc_info)

 # close the sockets
 for s in self._streams.values():
 s.socket.close()
 self._streams = {}

 self.is_running = False

 def _current_me(self):
 devices = []
 for device in self._kinects.values():
 devices.append({
 'id': device.kinect.unique_kinect_id,
 'endpoints': dict((k.name, v) for k, v in device.endpoints.items()),
 })

 return {
 'version': 1,
 'name': self.name,
 'endpoints': dict((k.name, v) for k, v in self.endpoints.items()),
 'devices': devices,
 }

 def _handle_control(self, type, payload):
 """Handle a control message. Return a pair giving the type and payload of the response."""

 if type == MessageType.ping:
 log.info('Got ping from client')
 return MessageType.pong, None
 elif type == MessageType.who:
 return MessageType.me, self._current_me()
 else:
 log.warn('Unknown message type from client: "{0}"'.format(type))
 return MessageType.error, {
 'code': 400, 'reason': 'Unknown message type "{0}"'.format(type)
 }

 def _create_and_bind_socket(self, type):
 """Create and bind a socket of the specified type. Returns the ZMQStream
 and endpoint address.

 """
 socket = self._zmq_ctx.socket(type)
 port = socket.bind_to_random_port('tcp://{0}'.format(self.address))
 return ZMQStream(socket, self._io_loop), 'tcp://{0}:{1}'.format(self._server_address, port)

 def __enter__(self):
 self.start()
 return self

 def __exit__(self, type, value, traceback):
 self.stop()

 def _control_recv(self, stream, msg):
 # Read message
 try:
 type, payload = parse_msg(msg)
 except ValueError as e:
 stream.send_multipart(make_msg(MessageType.error, {
 'code': 400,
 'reason': str(e),
 }))
 log.warn('Server received a bad message: {0}'.format(e))
 return

 # Handle control packet and receive response type and payload
 r_type, r_payload = self._handle_control(type, payload)

 # Send response
 stream.send_multipart(make_msg(r_type, r_payload))

 def _on_compressed_frame(self, depth_compresser, compressed_frame):
 kinect_id = depth_compresser.kinect.unique_kinect_id
 try:
 record = self._kinects[kinect_id]
 except KeyError:
 log.warn('Got depth from from unknown kinect "{0}"'.format(kinect_id))

 # Send data to clients
 stream = record.streams[EndpointType.depth]
 stream.send(compressed_frame)
 stream.flush()

[docs]class ServerBrowser(object):
 """An object which listens for kinect2 streaming servers on the network.
 The object will keep listening as long as it is alive and so if you want to
 continue to receive notification of servers, you should keep it around.

 io_loop is an instance of :py:class:`tornado.ioloop.IOLoop` which should
 be used to schedule sending signals. If *None* then the global instance is
 used. This is needed because server discovery happens on a separate thread
 to the tornado event loop which is used for the rest of the network
 communication. Hence, when a server is discovered, the browser co-ordinates
 with the event loop to call the :py:meth:`add_server` and
 :py:meth:`remove_server` methods on the main IOLoop thread.

 address is an explicit bind IP address for an interface to listen on as a
 decimal-dotted string or *None* to use the default.

 """
 on_add_server = Signal()
 """Signal emitted when a new server is discovered on the network. Receivers
 should take a single keyword argument, *server_info*, which will be an
 instance of :py:class:`ServerInfo` describing the server."""

 on_remove_server = Signal()
 """Signal emitted when a server removes itself from the network. Receivers
 should take a single keyword argument, *server_info*, which will be an
 instance of :py:class:`ServerInfo` describing the server."""

 def __init__(self, io_loop=None, address=None):
 self._io_loop = io_loop or IOLoop.instance()

 # A browser. Note the use of a weak reference to us.
 self._browser = zeroconf.ServiceBrowser(_get_zeroconf(address),
 _ZC_SERVICE_TYPE, ServerBrowser._Listener(weakref.ref(self)))

 class _Listener(object):
 """Listen for ZeroConf service announcements. The browser object is
 kept as a weak reference so that we don't end up with circular references.

 """
 def __init__(self, browser_ref):
 self.browser_ref = browser_ref

 # List of ServerInfo records keyed by FQDN
 self._servers = { }

 def addService(self, zeroconf, type, name):
 browser = self.browser_ref()
 if browser is None:
 return

 # Skip types we don't know about
 if type != _ZC_SERVICE_TYPE:
 return # pragma: no cover
 assert name.endswith('.' + _ZC_SERVICE_TYPE)

 zc_info = zeroconf.getServiceInfo(type, name)
 if zc_info is None:
 # Service went away
 return

 log.info('Service discovered: {0}'.format(name))
 short_name = name[:-(len(_ZC_SERVICE_TYPE)+1)]

 # Normalise FQDNs by stripping trailing period
 address = zc_info.getServer().rstrip('.')
 port = zc_info.getPort()

 # Form control endpoint address
 endpoint = 'tcp://{0}:{1}'.format(address, port)
 info = ServerInfo(name=short_name, endpoint=endpoint)

 self._servers[name] = info
 browser._io_loop.add_callback(
 browser.on_add_server.send, browser, server_info=info)

 def removeService(self, zeroconf, type, name):
 browser = self.browser_ref()
 if browser is None:
 return

 # Skip types we don't know about
 if type != _ZC_SERVICE_TYPE:
 return # pragma: no cover

 log.info('Service removed: {0}'.format(name))

 try:
 info = self._servers[name]
 del self._servers[name]
 browser._io_loop.add_callback(
 browser.on_remove_server.send, browser, server_info=info)
 except KeyError: # pragma: no cover
 log.warn('Ignoring server which we know nothing about')

 © Copyright 2014, Rich Wareham.
 Created using Sphinx 1.2.2.

